If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-179=0
a = 2; b = 6; c = -179;
Δ = b2-4ac
Δ = 62-4·2·(-179)
Δ = 1468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1468}=\sqrt{4*367}=\sqrt{4}*\sqrt{367}=2\sqrt{367}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{367}}{2*2}=\frac{-6-2\sqrt{367}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{367}}{2*2}=\frac{-6+2\sqrt{367}}{4} $
| 2x-30°=2x+10° | | 10,544=p(1+0.03*8) | | (x-3)(x-1)=35 | | 0.14x+2.59=0.05x+2.32 | | (3x+5)=(16x) | | 0.3x-2.3=-1.1 | | (3x+4)=(10x) | | 12-3x=1/3(36-9x) | | 342=19s | | 4(9-2)=8a-(4a+8) | | 3(x-12)=4x+36 | | 9x+2-7x+1=7x+1-x+5 | | -5w+4w+2=-7 | | 3(w-2)=2(w+6)-5 | | 0.6(y+2)=0.7(y-3) | | 41=-2d+7 | | 4x+1/9-6x+3/2=1/6 | | 3r-5(4r-1)=-4(4r-19) | | 4(-3q+1)+4=-13q | | x+4/6+3=7/2 | | -20m-14=6(-7m-17) | | 3y/7-15/28=y/4 | | 5y/12-23/84=y/7 | | -20m-14=6(7m-17) | | 4(x-3)+3(x+3)=3x-1 | | 2(x+5)-5x=2(x+3)+3x | | -7/3x-3=1/4x-3/2 | | -3(x-2)-2=5(x+4)+40 | | -m+7=15 | | 7x+1-5x+2=6x+3-x+2 | | {4u-12}=-4 | | 6b+5-b-6-7b=3b-2-b+21 |